MEMBRANE TECHNOLOGY

Programme Name/s : Chemical Engineering

Programme Code : CH
Semester : Fifth

Course Title : MEMBRANE TECHNOLOGY

Course Code : 315312

I. RATIONALE

The Membrane Technology course provides crucial knowledge and skills in membrane separation processes vital for chemical, pharmaceutical, food, dairy, and biotechnology industries. The course explores membrane types, modules, flow patterns, materials, preparation methods, and pore size distribution. Key topics include Microfiltration, Ultrafiltration, Nanofiltration, Reverse Osmosis transport mechanisms, fouling, and operating parameters. Combined theoretical and practical learning makes the student proficient to work on membrane technologies in industry.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences.

1. Operate membrane based systems in chemical and allied industries.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Identify a Membrane Separation Process for a given industrial application.
- CO2 Select appropriate membrane and module with suitable flow characteristics for a given separation duty in chemical process industry
- CO3 Develop and characterize membranes for various applications using different materials.
- CO4 Analyze transport mechanisms and fouling causes of membrane separation processes and suggest fouling control measures.
- CO5 Identify appropriate design and operating parameters for a membrane separation process for its effective performance.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	earı	ning	Sche	eme					A	ssess	ment	Sch	eme				
Course Code	Course Title	Abbr	Course Category/s	Co	Actual Contact Hrs./Week			NLH	Credits	Duration	Theory		Based on LL & TL Practical		&	Based on SL		Total -Marks			
				CL	TL	LL			• •	Duration	FA- TH		To	tal	FA-	PR	SA-	PR	SL		wiai Ks
		100									Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
315312	MEMBRANE TECHNOLOGY	MT	DSE	4		2		6	2	03	30	70	100	40	25	10	25#	10	1	1	150

Total IKS Hrs for Sem.: 0 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA - Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note:

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 10 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Explain the concept and basic principle of membrane separation. TLO 1.2 Classify membrane separation processes and enlist their advantages and disadvantages. TLO 1.3 Explain industrial applications of membrane separation processes with example.	Unit - I Introduction to Membrane Separation Processes 1.1 Membrane Separation: Concept and Basic Principle 1.2 Membrane Separation Processes: Classification, Advantages and Disadvantages. 1.3 Applications of Membrane Separation Processes: Chemical Industry, Pharmaceutical Industry, Food and Dairy Industry, Biotechnology Industry	Lecture Using Chalk-Board Video Demonstrations Presentations

	Theory Learning Outcomes		Suggested
Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Learning Pedagogies.
2	TLO 2.1 Classify membranes based on their final morphology. TLO 2.2 Explain different types of membrane modules. TLO 2.3 Distinguish between different membrane modules used in membrane separation processes. TLO 2.4 Explain different types of flow patterns in membrane separation process.	Unit - II Membrane: Types, Modules and Flow Patterns 2.1 Types of Membrane: 2.1.1 Microporous Membranes 2.1.2 Asymmetric Membranes 2.1.3 Thin Film Composite Membranes 2.1.4 Electrically Charged Membranes 2.1.5 Inorganic Membranes 2.2 Membrane Modules: 2.2.1 Plate and Frame Membranes 2.2.2 Spiral Wound Membranes 2.2.3 Hollow Fiber Membranes 2.2.4 Tubular Membranes 2.3 Flow Patterns in Membrane Separation Processes: 2.3.1 Complete Mixing 2.3.2 Co-current Flow 2.3.3 Cross Flow 2.3.4 Counter current Flow	Lecture Using Chalk-Board Model Demonstration Video Demonstrations Site/Industry Visit Concept Mapping
3	TLO 3.1 Enlist different types of materials used in preparation of membranes for separation processes. TLO 3.2 Explain various methods of membrane preparation for separation processes. TLO 3.3 Explain different characteristics of membranes used in separation processes. TLO 3.4 Choose a suitable material to prepare a membrane for given application.	Unit - III Membrane: Materials, Preparation and Characterization 3.1 Membrane Materials: 3.1.1 Cellulose Acetate 3.1.2 Polyamides 3.1.3 Polysulfone 3.1.4 Polymides 3.1.5 Polytetrafluoroethylene (PTFE) 3.1.6 Ceramic 3.2 Methods of Membrane Preparation: 3.2.1 Phase Inversion 3.2.2 Sol-gel Peptization 3.2.3 Film Stretching 3.3 Characterization of Membranes:	Lecture Using Chalk-Board Model Demonstration Demonstration E-Learning and Online Learning

MEMBRANE TECHNOLOGY

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
4	TLO 4.1 Describe the mechanism of transport in MF and UF membrane separation process. TLO 4.2 Identify key factors that influence retention and flow characteristics in MF and UF membrane separation processes. TLO 4.3 List the different types of membrane fouling and suggest application of specific fouling control techniques. TLO 4.4 State and explain various applications of MF and UF membrane separation processes in Chemical and Allied Industry	Unit - IV Microfiltration (MF) and Ultrafiltration (UF) 4.1 Microfiltration: 4.1.1 Transport Mechanism 4.1.2 Retention and Flow Characteristics 4.1.3 Membrane Fouling and its control 4.1.4 Energy Considerations 4.1.5 Industrial Applications. 4.2 Ultrafiltration: 4.2.1 Transport Mechanism 4.2.2 Retention and Flow Characteristics 4.2.3 Membrane Fouling and its control 4.2.4 Energy Considerations 4.2.5 Applications	Lecture Using Chalk-Board Video Demonstrations Site/Industry Visit Case-Based Learning
5	of separation in NF, RO, Dialysis and Electrodialysis membrane separation processes. TLO 5.2 Explain the concept of Osmosis and Reverse Osmosis phenomena. TLO 5.3 Compare NF and RO with other membrane processes like MF, UF, in terms of pore size and separation capabilities. TLO 5.4 Evaluate the impact of different design and operating parameters on the performance of NF and RO membrane separation processes. TLO 5.5 Analyze limitations and identify applications of NF and RO membrane separation processes in Chemical Industry. TLO 5.6 Distinguish between Dialysis and Electrodialysis membrane separation processes.	Unit - V Nanofiltration (NF), Reverse Osmosis (RO), Dialysis and Electrodialysis 5.1 Nanofiltration: Principle, Transport Mechanism, Parameters affecting performance of NF, Advantages and Disadvantages, Applications. 5.2 Reverse Osmosis: Phenomenon of Osmosis and Reverse Osmosis, Transport mechanism, Design and Operating Parameters, Concentration Polarization, Advantages, Disadvantages, Applications. 5.3 Dialysis: Principle, Transport Mechanism, Parameters affecting performance and Applications. 5.4 Electrodialysis: Principle, Transport Mechanism, Parameters affecting performance, Batch and Continuous Electrodialysis, Applications.	Lecture Using Chalk-Board Video Demonstrations Site/Industry Visit Case Based Learning

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles	Number	Relevant
Learning Outcome (LLO)	No	/ Tutorial Titles	of hrs.	COs

Proctice / Tutowick / Lobovetowy	Q		Number	Relevant	
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	of hrs.	COs	
LLO 1.1 Determine Trans Membrane	110	7 Tutoriai Tities	or mrs.	COS	
Pressure as a driving force for separation by membranes. LLO 1.2 Determine permeate flux by using given formula. LLO 1.3 Interpret the effect of different trans membrane pressures on permeate flux.	1	*Determination of Flux of a given membrane for different Trans Membrane Pressure.	2	CO1 CO2	
LLO 2.1 Prepare feed solutions with different solute concentrations to use in membrane separation process LLO 2.2 Determine permeate flux by using given formula. LLO 2.3 Interpret the effect of different concentrations of feed solution on permeate flux.	2	*Determination of Flux of a given membrane for different Feed Concentration.	2	CO1 CO2	
LLO 3.1 Determine pure water permeability of given membrane by using given formula for Dead End Flow pattern separation process. LLO 3.2 Determine pure water permeability of given membrane by using given formula for Cross Flow pattern separation process LLO 3.3 Interpret the effect of different flow patterns on the performance a given membrane	3	*Comparison of Pure Water Permeability of a given membrane for Dead End and Cross Flow patterns.	2	CO3	
LLO 4.1 Prepare dope solutions of given polymeric material to cast a membrane. LLO 4.2 Cast a flat sheet membrane on a glass plate by using prepared dope solutions. LLO 4.3 Prepare a sheet membrane by using phase inversion method.	4	*Preparation of a Flat Sheet Membrane from a given polymeric material by using Phase Inversion Method.	2	CO3	
LLO 5.1 Determine Molecular Weight Cut-off of a given membrane under a specific set of measurement conditions. LLO 5.2 Determine size based solute rejection characteristics of a membrane.	5	Determination of Molecular Weight of Cut- off of a given Membrane.	2	CO2 CO3	
LLO 6.1 Determine Bubble Point Pressure by using Cantor's equation LLO 6.2 Determine pore size of a given membrane by Bubble Point Pressure Test method.	6	*Determination of Integrity of a given membrane by using Bubble Point Test method.	2	CO3 CO5	

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 7.1 Determine percentage concentration of settleable solids in given sample. LLO 7.2 Determine percentage rejection of settleable solids from given sample by using MF	7	Determination of percentage rejection of Settleable Solids from given sample using Microfiltration Membrane Separation Process.	2	CO4 CO5
LLO 8.1 Determine percentage concentration of suspended solids in given sample. LLO 8.2 Determine percentage rejection of suspended solids from given sample by using UF membrane separation process.	8	Determination of percentage rejection of Suspended Solids from given sample by using Ultrafiltration Membrane Separation Process.	2	CO4 CO5
LLO 9.1 Determine percentage concentration of Total Dissolved Solids (TDS) in given sample. LLO 9.2 Determine percentage rejection of Total Dissolved Solids (TDS) in given sample by using NF membrane separation process	9	Determination of percentage recovery of dissolved solids in a given solution by Nanofiltration process.	2	CO4 CO5
LLO 10.1 Determine percentage concentration of Total Dissolved Solids (TDS) in given sample. LLO 10.2 Determine percentage rejection of Total Dissolved Solids (TDS) in given sample by using RO membrane separation process.	10	*Determination of percentage recovery of dissolved solids in a given solution by Reverse Osmosis process.	2	CO4 CO5

Note: Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

Case Study on Industrial Applications:

Identify and present a case study on the use of membrane technology in one of the following industries: chemical, pharmaceutical, food and dairy, or biotechnology. Include the specific process, type of membrane used, and the advantages and challenges encountered.

Flow Pattern Simulation

Simulate different flow patterns (complete mixing, co-current, cross-flow, counter-current) using a software tool. Analyze the effects of each flow pattern on membrane performance.

Membrane Preparation Techniques

Prepare a report on various methods of membrane preparation (phase inversion, sol-gel peptization, film stretching). Include practical steps, materials required, and possible challenges.

• Fouling Control Measures

Develop a comprehensive guide on different types of membrane fouling and the respective control measures. Include

01-06-2025 04:33:23 PM

Course Code: 315312

MEMBRANE TECHNOLOGY

preventive maintenance schedules and cleaning protocols.

Design and Operating Parameters Optimization

Conduct a study on the impact of design and operating parameters on the performance of NF and RO processes. Use simulation tools to optimize these parameters for a specific application.

Assignment

• Membrane Classification and Comparison

Create a detailed classification chart of different types of membranes (microporous, asymmetric, thin-film composite, electrically charged, inorganic). Compare their properties, advantages, and disadvantages.

• Material Selection for Membrane Preparation

Research and choose suitable materials for membrane preparation based on specific separation requirements. Justify your choice based on the material properties and application needs.

• Factors Influencing MF and UF Processes

Identify and explain the key factors influencing retention and flow characteristics in MF and UF processes. Provide real-life examples where these factors are critical.

• Comparative Analysis of Membrane Processes

Compare NF and RO with MF and UF in terms of pore size, separation capabilities, and typical applications. Create a comparative table for easy reference.

Activity

Real-Life Industrial Application

As a group, select an industrial process that uses membrane technology. Visit the site (if possible) or research extensively to prepare a detailed report on the application, challenges, and solutions.

Analysis of Different Membranes

Conduct a series of experiments to compare the performance of different types of membranes (e.g., MF, UF, NF, RO) under similar conditions. Analyze and present the data, highlighting the strengths and weaknesses of each membrane type.

• Workshop: Membrane Cleaning Techniques

Organize a workshop on various membrane cleaning techniques. Each group will prepare and demonstrate a cleaning method (e.g., chemical cleaning, backwashing, enzymatic cleaning) and discuss its effectiveness and impact on membrane lifespan.

• Field Visit: Industrial Membrane Plant Tour

Organize a field visit to an industrial plant using membrane technology. Observe the operations, interact with professionals, and gather information on the practical challenges and solutions. Prepare a report and presentation on your observations and insights.

Note:

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Membrane Filtration Unit: Type: Dead-end or cross-flow filtration unit, Material: Stainless steel or glass, Volume: 1-2 liters for laboratory-scale experiments, Temperature Control: Integrated heating/cooling jacket Pressure Gauges: Range: 0-10 bar (or higher, depending on the membrane and application) Accuracy: ±0.5% of full scale Type: Digital or analog Permeate Flow Meter: Type: Digital flow meter, Range: 0-1000 mL/min, Accuracy: ±1% of reading Feed Pump: Type: Gear pump or peristaltic pump, Flow Rate: 0-10 L/min (adjustable), Pressure Rating: Up to 10 bar (or higher) Pressure Control Valve: Type: Manual or automated, Material: Stainless steel, Pressure Range: 0-10 bar Membrane Holder: Type: Disk or flat-sheet membrane holder, Size: Suitable for standard membrane sizes (e.g., 47 mm diameter), Material: Stainless steel or high-grade plastic Stirring Mechanism: Type: Magnetic stirrer or overhead stirrer, Speed Range: 0-1500 RPM, Control: Digital or analog speed control Thermometer or Temperature Sensor: Type: Digital thermometer or thermocouple, Range: -10°C to 100°C, Accuracy: ±0.1°C Membrane Cleaning Apparatus (Optional): Type: Ultrasonic cleaner or chemical cleaning system, Volume: Suitable for the size of the membrane used	1,2,3,5
2	Casting Knife/Doctor Blade: Type: Adjustable gap (micrometer adjustable), Blade Width: 100-300 mm, Gap Range: 0-500 microns Glass Plate or Casting Substrate: Material: Smooth glass or stainless steel, Dimensions: 300 mm x 300 mm or larger Polymer Solution Preparation Setup: Magnetic Stirrer with Hot Plate: Stirring Speed: 0-1500 RPM, Temperature, Range: Ambient to 350°C, Beakers: Material: Borosilicate glass, Volume: 250 mL, 500 mL, 1000 mL Phase Inversion Bath: Type: Water or non-solvent bath, Material: Stainless steel or high-density polyethylene (HDPE), Dimensions: Large enough to fully submerge the cast membrane (e.g., 500 mm x 500 mm x 200 mm), Temperature Control: Optional cooling/heating system Drying Oven: Type: Convection or vacuum oven, Temperature Range: Ambient to 150°C, Control: Digital temperature control with timer Ultrasonic Bath: Type: Ultrasonic cleaner, Volume: 2-5 liters, Frequency: 40 kHz or higher	4

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
	Bubble Point Test Apparatus:	
	Type: Automated or manual setup, Material: Stainless steel or high-grade plastic, Pressure	ZAI
	Range: 0-10 bar (or higher, depending on membrane specifications)	
	Pressure Regulator	
	Type: Precision pressure regulator, Pressure Range: 0-10 bar, Accuracy: ±0.1% of full scale,	a i
1	Control: Manual or digital	
	Pressure Gauge	
1	Type: Digital or analog, Range: 0-10 bar, Accuracy: ±0.5% of full scale	-1 /
	Compressed Gas Supply	
	Type: Compressed air or nitrogen gas cylinder, Purity: 99.99% or higher, Regulator: Pressure	
	regulator with flow control	
	Membrane Holder/Module	
	Type: Disk or flat-sheet membrane holder, Size: Suitable for standard membrane sizes (e.g.,	
3	47 mm diameter), Material: Stainless steel or high-grade plastic	6
3	Water Reservoir	
	Material: Glass or high-density polyethylene (HDPE), Volume: 1-2 liters	
	Bubble Detection System	
	Type: Visual observation or automated bubble detection, Visual: Transparent viewing	
	chamber, Automated: Optical sensor or camera system	
	Sample Collection Vials (Optional)	
	Material: Glass or plastic, Volume: 10-50 mL	
	Stirring Mechanism (Optional)	
	Type: Magnetic stirrer, Speed Range: 0-1500 RPM, Control: Digital or analog speed control	
	Protective Equipment	
	Gloves: Chemical resistant, Goggles: Safety goggles, Lab Coat: Chemical resistant	
	Calibration Standards	
	Type: Known pore size membranes or filters, Range: Covering expected bubble points for	
	calibration	

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
	Membrane Separation Test Rig:	
	Type: Bench-scale or pilot-scale test rig, Configuration: Designed for spirally wound	
	membrane modules, Material: Stainless steel or corrosion-resistant materials, Capacity:	
	Suitable for laboratory-scale samples (e.g., 1-10 liters)	
	Feed Pump	
	Type: Gear pump or peristaltic pump, Flow Rate: 0-10 L/min (adjustable), Pressure Rating:	
	Up to 6 bar (or higher, depending on membrane specifications) Pressure Gauges	
	Type: Digital or analog, Range: 0-6 bar, Accuracy: ±0.5% of full scale	
	Flow Meters	
	Type: Digital flow meters for feed, permeate, and retentate streams, Range: 0-1000 mL/min,	
	Accuracy: ±1% of reading	
	Pressure Control Valves	
	Type: Manual or automated, Material: Stainless steel, Pressure Range: 0-6 bar	
	Feed and Permeate Reservoirs	
	Material: Glass or high-density polyethylene (HDPE), Volume: 5-10 liters each	
	Temperature Control System	
	Type: Integrated heating/cooling jacket or external temperature control bath, Range: Ambient	
4	to 100°C, Control: Digital temperature control	7,8,9,10
	Stirring Mechanism (Optional) Type: Magnetic stirrer or overhead stirrer, Speed Range: 0-1500 RPM, Control: Digital or	
	analog speed control	
	Sample Collection Vials	A 1
	Material: Glass or plastic, Volume: 10-50 mL	
	Analytical Balance	<i>pr</i>) (
	Type: Precision balance, Readability: 0.1 mg, Capacity: Up to 200 g	
	Spectrophotometer (Optional)	
	Type: UV-Vis spectrophotometer, Wavelength Range: 190-1100 nm, Resolution: 1 nm	44
	Turbidity Meter	
	Type: Digital turbidity meter, Range: 0-1000 NTU, Accuracy: ±0.1 NTU	
	Cleaning System (Optional)	Zal I
	Type: Integrated cleaning in place (CIP) system, Cleaning Solutions: Compatible with the	
	membrane material	V-1
	Protective Equipment Classes Chamical resistant Conseles Sefety appelles Lab Cont. Chamical resistant	
	Gloves: Chemical resistant, Goggles: Safety goggles, Lab Coat: Chemical resistant Calibration Standards	R/
	Type: Known particle size standards or synthetic settleable solids, Range: Covering expected	
	range of settleable solids for calibration	T# /

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours			A- Level	Total Marks
1	Ι	Introduction to Membrane Separation Processes	CO1	4	2	6	4	12
2	II	Membrane: Types, Modules and Flow Patterns	CO2	6	2	6	4	12

MEMBRANE TECHNOLOGY

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks
3	III	Membrane: Materials, Preparation and Characterization	CO3	8	2	6	6	14
4	IV	Microfiltration (MF) and Ultrafiltration (UF)	CO4,CO5	10	2	6	6	14
5	V	Nanofiltration (NF), Reverse Osmosis (RO), Dialysis and Electrodialysis	CO4,CO5	12	4	8	6	18
		Grand Total		40	12	32	26	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• Theory: Comprises of two progressive theory tests to be assessed out of 30 Marks Maximum wherein, the average of the marks obtained in both the tests is to be considered for final gradation.

Laboratory Learning: Comprises of a continuous assessment of each Experiment to be assessed out of **25 Marks Maximum** wherein 60% marks are to awarded for Process related performance and 40% marks to be awarded for Product related part of the experiment.

Summative Assessment (Assessment of Learning)

• Theory: Comprises of End Semester Examination to be assessed out of 70 Marks Maximum.

Laboratory Learning: Comprises of an End Semester Examination to be assessed out of 25 Marks Maximum.

XI. SUGGESTED COS - POS MATRIX FORM

	Programme Outcomes (POs)						Programme Specific Outcomes* (PSOs)			
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions		SACIETY			1	PSO- 2	PSO-
CO1	3	1		2	3_	<u>-</u> <u>-</u> -	2			
CO2	3	3	2	3	2	-	2			
CO3	3	2	3	3	2	1	2			
CO4	3	3	2	2	2	2	2			
CO5	3	3	2	3	2	3	2			

Legends: - High:03, Medium:02, Low:01, No Mapping: -

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Anthor	Title	Publisher with ISBN		
	Author	Title	Number		

^{*}PSOs are to be formulated at institute level

MEMBRANE TECHNOLOGY

Sr.No	Author	Title	Publisher with ISBN Number
1	Richard Baker	Membrane Technology and Applications	Publisher:Wiley ISBN:978-0470743720
2	Kaushik Nath	Membrane Separation Processes	Publisher: PHI Learning ISBN: 978-8120335325
3	Marcel Mulder	Basic Principles of Membrane Technology	Publisher: Springer: ISBN: 978-9401058545
4	J.G. Crespo and K.W. Boddeker	Membrane Processes in Separation and Purification	Publisher:Springer ISBN:978-0792323586
5	Norman N Li, Anthony G. Fane, W. S. Winston Ho, Takeshi Matsuura	Advanced Membrane Technology and Applications	Publisher:Wiley ISBN:978-0471731672

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description			
1	COMSOL Multiphysics	This software is highly versatile and is used for simulating various physical processes, including those in membrane technology. It can model the flow patterns pressure distributions, and solute concentrations in membrane systems.			
2	Aspen Plus	Aspen Plus is a process simulation software used in chemical engineering. It can model and optimize membrane separation processes, including reverse osmosis, ultrafiltration, and nanofiltration.			
3	MATLAB	MATLAB is a powerful tool for numerical analysis and simulation. It can be used to model membrane processes, develop control algorithms, and analyze experimental data.			
4	CHEMCAD	CHEMCAD is another process simulation software that can be used to model membrane separation processes, including the design and analysis of membrane systems.			
5	NPTEL (National Programme on Technology Enhanced Learning.)	NPTEL offers free online courses and video lectures in engineering and science, including topics on membrane technology. URL:https://onlinecourses.nptel.ac.in/noc22_ch14/preview URL:https://nptel.ac.in/courses/103/106/103106139/ URL:https://www.youtube.com/user/nptelhrd			
6	MIT OpenCourseWare (Massachusetts Institute of Technology)	MIT OCW provides free course materials from a wide range of subjects, including chemical engineering and membrane technology.			
7	Coursera	Coursera offers free courses from universities and institutions around the world. Look for courses on membrane technology, chemical engineering, and related subjects. (Note: Some courses may have free content with an option to pay for a certificate.)			
8	8 ScienceDirect (Open Access Articles) ScienceDirect provides access to open access articles from the Journ Membrane Science.				
9	YouTube	YouTube hosts many educational channels and lectures on membrane technology. Channels like MIT OpenCourse Ware, NPTEL, and others provide valuable content. URL:https://www.youtube.com/results? search_query=membrane+technology+education			

Sr.No	Link / Portal	Description
		Udemy offers a variety of courses on membrane technology and chemical
		engineering. Courses are self-paced, often affordable, and come with lifetime
		access once purchased.
10	Udemy	URL:https://www.udemy.com/courses/search/?
	100 Y 1	q=membrane%20technology&src=sac&kw=membrane%20tech
1	7	URL:https://www.udemy.com/courses/search/?
1		q=chemical%20engineering&src=sac&kw=chemical%20engi
		Membrane System: Terminology
	A second second	https://youtu.be/yc4NDVF6Q98?si=wroKIhnE5I5odFPl
		Complete Course on Membrane Technology by IIT Madras
		https://www.youtube.com/playlist?
		list=PL0x4e4H6SQmhY5XZkamFSdtg0IlBTafMM
		Membrane Separation: An Overview
		https://www.facebook.com/share/v/uPGckPq2LBkkU1Gx/
		https://youtu.be/rjkvAqtsW_Y?si=6ZSIPNm6fGmMN_ph
		Membrane Modules:
		Plate and Frame Membrane Modules: How do they work?
		https://youtu.be/unG-jfloeHE?si=X7yJURoTnjB85w
		Spiral Wound Membrane Modules: How do they work?
		https://youtu.be/HFBT-x0VFQ0?si=ANEEEcqqphoe-B9w
		https://youtu.be/3pgzbkc5WIo?si=JgdVShxhDp7JgmTJ
		Hollow Fibre Membrane Modules: How do they work? https://youtu.be/B11JuAjOF-M?si=QddfOg3sQ6EZCgd1
		https://youtu.be/unG-jfloeHE?si=2endWZkRjkCdxFqk
		Tubular Membrane Modules: How do they work?
11	Some Important Links	https://youtu.be/24Eg HcWMXY?si=p9wx6ttIHtaJcCIA
11	Some important Links	Membrane Separation Processes:
		Microfiltration Membrane Separation Process:
		https://youtu.be/9TZzXODgq3Y?si=CFd3urq4w7USA5M3
	2.0	Ultrafiltration Membrane Separation Process:
	/ · //	https://youtu.be/XyJ- xIOKEE?si=YHkXPS04lAZBmL81
	/ /7 = /	Nanofiltration Membrane Separation Process:
	/ //.LA:"/	https://youtu.be/RMxbC1IitGg?si=TgBRJEg2xtYzXLr3
- 7	457 1/	Osmosis: The concept
		https://youtu.be/y1LRXUzQFXU?si=SupIQDANg8D2nOvM
		Reverse Osmosis: The Concept
	The said to the	https://youtu.be/IxnkmKgbJ0Y?si=brTZ_OfuSRyJW4fN
		https://youtu.be/rsyGG49SVbU?si=p27EVEI_PeQw6XfW
		Reverse Osmosis Membrane Separation Process:
		https://youtu.be/RMxbC1IitGg?si=TgBRJEg2xtYzXLr3
		Dialysis Membrane Separation Process:
		https://youtu.be/YviI4AjKHsg?si=1KGnCaoL-JKVcsnt
		Electrodialysis Membrane Separation Process:
		https://youtu.be/_hPgUhXvxXQ?si=0XO6GilXPaxN-Qd_

Note:

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MEMBRANE TECHNOLOGY	Course Code: 315312
MSBTE Approval Dt. 24/02/2025	Semester - 5, K Scheme